КампутарыАбсталяванне

Арыфметыка-лагічнае прылада (АЛУ) - што гэта?

Як вядома, працэсар кампутара складаецца з чатырох базавых кампанентаў: арыфметыка-лагічнай прылады, модуля ўводу / высновы, а таксама блокаў памяці і кіравання. Такую архітэктуру вызначылі яшчэ ў мінулым стагоддзі і, нягледзячы на тое што прайшло нямала часу, класічная структура фон Нэймана застаецца актуальнай.

Што такое АЛУ?

Арыфметыка-лагічнае прылада - гэта адзін з кампанентаў працэсара, які неабходны для ажыццяўлення пераўтварэнняў лагічнага і арыфметычнага тыпу, пачынаючы элементарнымі і заканчваючы складанымі выразамі. Разраднасць выкарыстоўваюцца аперанд прынята лічыць даўжынёй словы, або памерам.

Галоўная задача АЛУ заключаецца ў перапрацоўцы дадзеных, якія захоўваюцца ў аператыўнай памяці кампутара. Акрамя таго, арыфметыка-лагічнае прылада здольна вырабляць сігналы кіравання, якія накіроўваюць ЭВМ на выбар правільнага шляху для выканання неабходнага вылічальнага працэсу ў залежнасці ад выніковых тыпаў дадзеных. Усе аперацыі задзейнічаюць электронныя схемы, кожная з якіх структурна дзеліцца на тысячы элементаў. Такія платы звычайна быстродейственные і адрозніваюцца высокай шчыльнасцю.

У залежнасці ад сігналаў, якія паступаюць на ўваход, АЛУ выконваюць розныя тыпы аперацый з дзвюма лічбамі. Любое арыфметыка-лагічнае прылада кампутара прадугледжвае рэалізацыю чатырох базавых дзеянняў, зрухаў, а таксама лагічных пераўтварэнняў. Набор аперацый АЛУ - гэта яго галоўная характарыстыка.

Складовыя часткі арыфметыка-лагічнай прылады - гэта чатыры асноўныя групы вузлоў, якія адпавядаюць працэсам кіравання, перадачы, захоўвання і пераўтварэнні паступаюць дадзеных.

Вузлы захоўвання АЛУ

Да гэтай катэгорыі адносяцца:

  • трыгеры, якія захоўваюць дапаможныя біты і розныя прыкметы вынікаў;
  • рэгістры, якія адказваюць за цэласнасць аперанд, прамежкавых і канчатковых вынікаў.

Часам рэгістры арыфметыка-лагічнай прылады могуць аб'ядноўвацца ў спецыялізаваны блок памяці, а трыгеры - фармаваць адзіны рэгістр стану.

Вузлы перадачы АЛУ

Да гэтай катэгорыі адносяцца:

  • шыны, якія злучаюць паміж сабой блокі прылады;
  • мультыплексары і вентылі, якія адказваюць за выбар правільнага напрамкі выканання аперацый.

Вузлы пераўтварэнні АЛУ

Сюды адносяцца:

  • суматар, якія выконваюць микрооперации;
  • схемы выканання лагічных дзеянняў;
  • сдвигатели;
  • карэктары для дзесятковай арыфметыкі;
  • пераўтваральнікі кода, якія выкарыстоўваюцца для атрымання зваротных або дадатковых даных;
  • лічыльнікі для падліку колькасці выкананых цыклаў і для рэалізацыі дапаможных пераўтварэнняў.

Вузлы кіравання АЛУ

Да гэтай катэгорыі аб'ектаў адносяцца:

  • кантрольны блок;
  • дэшыфратар сігналаў;
  • схемы пераўтварэнні лагічных прыкмет, неабходныя для фарміравання галін для выканання мікрапраграм.

Дзеянне прылады кіравання працэсара

Гэты блок адказвае за выпрацоўку паслядоўнасці функцыянальных сігналаў, патрэбнай для карэктнага выканання зададзенай каманды. Як правіла, такія пераўтварэнні рэалізуюцца за некалькі тактаў.

Кіравальнае прылада забяспечвае аўтаматычнае выкананне праграмы. Пры гэтым задзейнічаюцца неабходныя каардынаваныя адгалінаванні працы іншых складнікаў кампанентаў машыны.

За дзеянне прылады кіравання адказвае базавы прынцып микропрограммирования, які мае выразнае лік характарыстык.

класіфікацыя АЛУ

Арыфметыка-лагічныя прылады па спосабу апэраваньня зменнымі дзеляць на паралельныя і паслядоўныя. Галоўнае адрозненне паміж гэтымі АЛУ заключаецца ў спосабе прадстаўлення аперанд і выканання аперацый.

Па характары выкарыстання арыфметыка-лагічныя прылады дзеляць на шматфункцыянальныя і блокавыя. У АЛУ першага тыпу для выканання аперацый з рознымі формамі паняццяў лікаў выкарыстоўваюцца адны і тыя ж схемы, якія прыстасоўваюцца да запатрабаваць рэжыму работы з дадзенымі. У блокавых прыладах ўсе аперацыі выконваюцца праз размеркаванне па відах дадзеных. Для дзеянняў з дзесятковымі лікамі, лічбавымі і алфавітным палямі, лічбамі з якая плавае або фіксаванай кропкай выкарыстоўваюцца розныя схемы. Пры гэтым арыфметыка-лагічнае прылада працуе нашмат хутчэй дзякуючы паралельны выкананню зададзеных задач. Але ў іх ёсць і недахоп - павялічаныя выдаткі на падтрымку абсталявання.

Арыфметыка-лагічнае прылада па спосабе прадстаўлення можа выкарыстоўвацца для:

  • дзесятковых лікаў;
  • лікаў з якая плавае кропкай;
  • лікаў з фіксаванай кропкай.

аперацыі прылады

Структура АЛУ мяркуе выкананне дзеянняў праз лагічныя функцыі, якія дзеляцца на такія групы:

  • дзесятковая арыфметыка;
  • двайковая арыфметыка для лічбаў з выразна пазначанай кропкай;
  • шаснаццатковы арыфметыка для выразаў з што плавае падзельнікам;
  • мадыфікацыя адрасоў каманд;
  • аперацыі лагічнага тыпу;
  • пераўтварэнне алфавітна-лічбавых палёў;
  • спецыяльная арыфметыка.

Сучасныя электронна-вылічальныя машыны здольныя рэалізаваць усе вышэйзгаданыя тыпы актыўнасці, а микроЭВМ не маюць такога базавага функцыяналу, таму найбольш складаныя працэдуры выконваюць праз падключэнне невялікіх падпраграм.

Арыфметычныя аперацыі і лагічныя працэдуры

Усе дзеянні АЛУ можна ўмоўна падзяліць на некалькі груп.

Арыфметычныя аперацыі ўключаюць у сябе дзяленне, множанне, адніманне модуляў, звычайнае адніманне і складанне.

Да групы лагічных пераўтварэнняў прылічаюць лагічнае «і» і «ці», гэта значыць конъюнкцию і дизъюнкцию, а таксама параўнанне дадзеных на роўнасць. Такія працэдуры, як правіла, праводзяць над двайковымі словамі, якія складаюцца з мноства разрадаў.

Да спецыяльных арыфметычным аперацыях ставяцца нармалізацыя, лагічны і арыфметычны зрухі. Паміж гэтымі пераўтварэннямі ёсць істотная розніца. Калі пры арыфметычным зруху ў месцазнаходжанні мяняюць толькі лічбавыя разрады, то пры лагічным знакавы разрад далучаецца да руху.

Кожную аперацыю, якая адбываецца з дапамогай выкарыстання арыфметыка-лагічнай прылады, можна назваць паслядоўнасцю функцый лагічнага тыпу, якія апісваюцца многоразрядной логікай для электронна-вылічальных машын. Да прыкладу, для двайковых ЭВМ выкарыстоўваецца двайковая логіка і гэтак далей, аж да дзесяцярычнае сістэмы.

Абсалютна ва ўсіх арыфметыка-лагічных пераўтварэнняў ёсць уласныя аперанды, а вынікі на выхадзе тлумачацца як бітаў радкі з шаснаццаццю разрадамі. Выключэннем з'яўляюцца толькі прымітывы знакавага дзялення DIVS. А разнастайныя сцягі дазваляюць трактаваць дадзеныя на выхадзе як лічбы са знакам мінус ці плюс пры перапаўненні. Логіка пераўтварэнні бітаў будуецца на арыфметыцы па модулю. Сцяг ставiцца, калi адбыліся непрадказальныя змены са знакам. Да прыкладу, складаючы два станоўчых колькасці, вы павінны атрымаць вынік са знакам "+". Але калі адбываецца перанос у знакавы біт, які ўсталёўвае адзінку, а вынік атрымліваецца адмоўным, то усталёўваецца сцяг перапаўнення.

Логіка біта пераносу грунтуецца на беззнаковой арыфметыцы. Гэты сцяг усталёўваецца сістэмай, калі згенераваны перанос з старэйшага разраду не можа быць запісаны як вынік. Гэты біт АЛУ вельмі эфектыўны пры выкарыстанні пераўтварэнняў з шматслоўнымі ўяўленнямі.

заключэнне

Арыфметыка-лагічнае прылада выкарыстоўваецца для выканання лагічных і арыфметычных пераўтварэнняў над неабходнымі аперанда, у ролі якіх часта выступаюць каманды або коды лікаў. Пасля выканання дзеяння вынік зноў паступае ў запамінальная прылада для выкарыстання ў наступных вылічэннях.

Similar articles

 

 

 

 

Trending Now

 

 

 

 

Newest

Copyright © 2018 be.delachieve.com. Theme powered by WordPress.